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Abstract 
As transistors decrease in size more and more of them can be accommodated in a single die, thus increasing 

chip computational capabilities. However, transistors cannot get much smaller than their current size. The quantum-

dot cellular automata (QCA) approach represents one of the possible solutions in overcoming this physical limit. In 

this brief, we propose a new adder that outperforms all state-of-threat competitors and achieves the best area-delay 

tradeoff. The above advantages are obtained by using an overall area similar to the cheaper designs known in 

literature. In this we are reducing  the delay which occurs in RCA and area which occurs in CLA. The 128-bit 

version reduced an area of 32.25µm2 and ADP of 542. 
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      Introduction
Nanotechnology draws much attention from 

the public now-a-days. Because the current silicon 

transistor technology faces challenging problems, 

such as high power consumption and difficulties in 

feature size reduction, alternative technologies are 

sought from researchers. Quantum-dot cellular 

automata (QCA) is one of the promising future 

solutions. Since it was first introduced in 1993 , 

experimental devices for semiconductor, molecular, 

and magnetic approaches have been developed . 

Quantum dot cellular automata, which is an array of 

coupled quantum dots to implement boolen logic 

functions. The advantage of QCA is high packing 

densities due to the small size of the dots, simplified 

interconnection and low area delay product. 

 

Adders 
In electronics, an adder or summer is a 

digital circuit that performs addition of numbers. In 

many computers and other kinds of processors,  

adders are used not only in the arithmetic logic 

unit(s), but also in other parts of the processor, where  

they are used to calculate addresses, table indices, 

and similar operations. Although adders can be 

constructed for many numerical representations, such 

as binary-coded, decimal or excess-3, the most 

common adders operate on binary numbers. In cases 

where two's complement or ones' complement is 

being used to represent negative numbers, it is trivial 

to modify an adder into an adder–subtractor. 

Other signed number representations require a more 

complex adder. 

Adders are fundamental circuits for most digital 

systems and several adder designs in QCA have been 

proposed, and a performance comparison was 

improved. Better adder performance depends on 

minimizing the carry propagation delay and reducing 

the area. 

 

Quantum dot Cell  
In 1993, Lent et al. proposed a physical 

implementation of an automaton using quantum-

dot cells. The automaton quickly gained popularity 

and it was first fabricated in 1997. Lent combined the 

discrete nature of both cellular automata and quantum 

mechanics, to create nano-scale devices capable of 

performing computation at very high switching 

speeds and consuming extremely small amounts of 

electrical power. Today, standard solid state QCA 

cell design considers the distance between quantum 

dots to be about 20 nm, and a distance between cells 

of about 60 nm. Quantum dot Cellular Automata are 

based on the simple interaction rules between cells 

placed on a grid. A QCA cell is constructed from four 

quantum dots arranged in a square pattern. These 

quantum dots are sites electrons can occupy 

by tunneling to them. Because of Coulombic 

repulsion, the two electrons will always reside in 

opposite corners. The locations of the electrons in the 

cell (also named polarizations P) determine two 

possible stable states that can be associated to the 

binary states 1 and 0. Although adjacent cells interact 

through electrostatic forces and tend to align their 

polarizations, QCA cells do not have intrinsic data 

flow directionality. 
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Cell design 

 
Fig 1: Simplified Diagram of QCA Cell 

 

 

 

 

 

 

 

 

Fig 2: Four Dot Quantum Cell 

 

The Figure 1 shows a simplified diagram of 

a quantum-dot cell. If the cell is charged with two 

electrons, each free electron to tunnel to any site in 

the cell, these electrons will try to occupy the furthest 

possible site with respect to each other due to 

mutual electrostatic repulsion. Therefore, two 

distinguishable cell states exist. Figure 2 shows the 

two possible minimum energy states of a quantum-

dot cell. The state of a cell is called its polarization, 

denoted as P. Although arbitrarily chosen, using cell 

polarization P = -1 to represent logic “0” and P = +1 

to represent logic “1” has become standard practice. 

 

Clock zones 
Several approaches have been suggested for 

computation with an array of QCA cells. One 

approach is based on transferring the array to an 

excited state from a ground sate by merely applying 

input data (without explicit clocking). The array is 

expected to settle to a new ground state. However, 

sometimes the transition may result in a metastable 

which is an intermediate state. To facilitate transfer to 

a new ground state, another approach based on 

clocking has been suggested.Clocking means  

application of an appropriate voltage to a cell which  

leads to adjustment of tunneling barriers between 

quantum dots for transfer of electrons between the 

dots. To achieve controllable data directions, the cells 

within a QCA design are partitioned into the clock 

zones that are progressively associated to four clock 

signals, each phase shifted by 90°. A QCA cell is 

clocked by using a four-phase clocking scheme as 

shown in figure. The four phases correspond to these 

clock zones are switch, hold, release and relax. In the 

switch phase, cells begin un polarized and with low 

potential barriers but the barriers are raised during 

this phase. In the hold phase, the barriers are held 

high while in the release phase, the barriers are 

lowered. In the last phase, namely relax, the barriers 

remain lowered and keep the cells in an un polarized 

state. 

\  

Fig 3: QCA clock zones 

 

Logic gates 
The logic elements of QCA are an inverter 

and majority gate. An inverter is designed by 

positioning cells diagonally from each other to 

achieve the inversion functionality. A majority gate 

consists of five QCA cells that realize the function of 

M(a; b; c) = ab + bc + ac. Two-input AND gate and 

OR gates can be designed by fixing one of the 

majority gate inputs to ”0” and ”1”, respectively 

shown as follows. 

             AND = M(a,b,0) 

OR   = M(a,b,1) 

If one input is set to 0, then the output is the AND of 

the other two inputs. If one input is set to 1, then the 

output is the OR of the other two inputs. With ANDs, 

ORs, and inverters, any logic function can be 

realized. 

 
Fig 4: QCA inverter and Majority gate 

 

Ripple Carry Adder 
Half Adders can be used to add two one bit 

binary numbers. It is also possible to create a logical 

circuit using multiple full adders to add N-bit binary 

numbers.Each full adder inputs a Cin, which is 

the Cout of the previous adder. This kind of adder is 
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a Ripple Carry Adder, since each carry bit "ripples" 

to the next full adder. The first (and only the first) 

full adder may be replaced by a half adder.The block 

diagram of 4-bit Ripple Carry Adder is shown here 

below - 

  

Fig 5: A conventional Ripple carry adder. 

 

Excluding a serial adder, which consists of just a full 

adder and 1-bit storage, the simplest possible adder is 

the carry-ripple.  The design of an n-bit ripple adder 

that takes two operands,  

A= An-1An-2An-3...A0 , B= Bn-1Bn-2Bn-3...B0  and produces 

a sum of  S= Sn-1Sn-2Sn-3...S0 is shown in Figure6.      

Ci-1 is the carry into the adder and is usually 0 for 

unsigned arithmetic; Cn-1  is the carry out of the 

adder. The logical equations are 

Si= (Ai^Bi)^Ci-1 

Ci=AiBi+( Ai^Bi)^ Ci-1 

 If performance is measured in terms of 

logical date-delays, then the serial adder appears to 

be rather slow, because the full adders cannot always 

operate in parallel. In general, the full adder at stage i 

has to wait for a possible carry from stage i-1, which 

in turn has to wait for a possible carry from stage i-2, 

and so forth. The operational time is therefore O(n), 

in contrast with the O(log n) of the fastest adders. 

 

 
Fig 6: Ripple carry adder 

 

Carry Look Ahead Adder 
Carry-lookahead is arguably the most 

important technique in the design of fast adders, 

especially large ones. In straightforward addition, e.g. 

in a ripple adder, the operational time is limited by 

the (worst-case) time allowed for the propagation of 

carries and is proportional to the number of bits 

added. So faster adders can be obtained by devising a 

way to determine carries before they are required to 

form the sum bits. Carry-lookahead does just this, 

and, in certain cases the resulting adders have an 

operational time that is independent of the operands' 

word-length. 

A carry, Ci, is produced at bit-stage i if either one is 

generated at that stage or if one is propagated from 

the preceding stage. So a carry is generated if both 

operand bits are 1, and an incoming carry is 

propagated if one of the operand bits is 1 and the 

other is 0. Let Pi and Gi denote the generation and 

propagation, respectively, of a carry at stage i, Ai and 

Bi denote the two operands bits at that stage, and     

Ci-1 denote the carry into the stage. Then we have 

Gi=AiBi 

Pi = Ai^Bi 

Ci = Gi + PiCi-1 

 

and the sum can be written as Si== Pi^Ci-1 which 

allows the use of shared logic to produce Si and Pi. 
 

C0 = G0  +  P0Ci-1 

C1 = G1 + P1P0C-1+ P1G0 

. 

. 

. 

Ci = Gi + Pi-1Gi-1+PiPi-1Gi-2+…+PiPi-1Pi-2…P0C-1  
where Ci-1 is the carry into the adder. The equation 

for Ci states that there is a carry from stage i if there 

is a carry generated at stage i, or if there is a carry 

that is generated at stage i-1 and propagated through 

stage i or if , or if the initial carry-in, Ci-1, is 

propagated through stages 0,1,… i. The complete set, 

of equations show that, in theory at least, all the 

carries can be determined independently, in parallel, 

and in a time (three gate delays) that is independent 

of the number of bits to be added. The same is also 

therefore true for all the sum bits, which require only 

one additional gate delay. 

 

 
Fig 7: Generation of propagate and generate bits 

Gi = AiBi 

Pi = Ai^Bi 

Compared with a ripple adder, as well as some of the 

other adders, a pure carry-look ahead adder has high 

logic costs. Furthermore, high fan-in and fan-out 

requirements can be problematic: the fan-out required 

of the Gi and Pi signals grows rapidly with n, as does 

the fan-in required to form Ci. For sufficiently large 

values of n, the high fan- in and fan-out requirements 

will result in low performance, high cost, or designs 

that simply cannot be realized. 

http://www.ijesrt.com/
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Fig 8: Carry block 

This carry block is cascaded with the propagate and 

generate block. So, that carry is obtained with the 

following equation. 

Ci = Gi + PiCi-1 

 
Fig 9: Sum block 

This sum block is cascaded with the above carry 

block to obtain the sum. The following equation 

gives the sum bit 

Si = Pi ^ Ci-1. 

 

Novel bit adder 

 
Fig 10: Basic novel 2 bit adder 

 

The following shows the carry block which generate 

the carry bits. 

 

 
Fig11: Carry block 

 
Fig 12: Sum block 

 

The above carry block is cascaded with the sum 

block which generate the sum bits. The following are 

the equations for the carry bits and the sum bits.  

Ci+2= M(M(ai+1,bi+1,gi)M(ai+1,bi+1,pi)ci) 

For sum block: 

 For odd  

              Sj+1=M(~Cj+3M(aj+2,~Cj+3,bj+2),Cj+2)  

 For even 

                Sj+2=M(~Cj+3M(Pj+2,~Cj+3,Gj+2),Cj+2) 

 

Simulation results: 

 
Fig 13: Simulation results obtained for the 128 novel bit adder 

http://www.ijesrt.com/
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Implementation 
In this paper code is written in Verilog for 

developing the software. The XINLINX 14.3 is used 

to edit, compile and debug this code. The following 

shows the  simulation results for 128 novel bit adder 

 

Comparision results 

Critical path consistencies and post layout 

characteristics, such as cell count, overall size, delay, 

number of clock phases, and ADP, are shown in 

Table II for all the compared adders. The number of 

cascaded MGs within the worst case computational 

path directly impacts on the achieved speed 

performances as an MG always adds one more clock 

phase. 

 

Conclusion 
A new adder designed in QCA was 

presented. It achieved speed performances higher 

than all the existing QCA adders, with an area 

requirement comparable with the cheap RCA and 

CFA demonstrated in [13] and [16]. The novel adder 

operated in the RCA fashion, but it could 

propagate a carry signal through a number of 

cascaded MGs significantly lower than conventional 

RCA adders. In addition, because of the adopted 

basic logic and layout strategy, the number of clock 

cycles required for completing the elaboration was 

limited. A 128-bit binary adder designed as described 

in this brief exhibited a delay of only seventeen clock 

cycles, occupied an active area of 32.25 μm2, and 

achieved an ADP of only 548.25. 
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